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We investigate the role of the unstable periodic orbits and their manifolds in the dynamics of a time-
dependent two-dimensional scattering system. As a prototype we use two oscillating disks on the plane with
the oscillation axes forming an angleu. The phase space of the system is five dimensional and it possesses a
variety of families of unstable periodic orbits(UPOs) with intersecting manifolds. We perform numerical
experiments to probe the structure of distinct scattering functions, in one and two dimensions, near the location
of the UPOs. We find that the corresponding manifolds occur only in a very particular and localized way in the
high-dimensional phase space. As a consequence the underlying fractal structure is ubiquitous only in higher-
dimensional, e.g., two-dimensional, scattering functions. Both two-dimensional and one-dimensional scattering
functions are dominated by seemingly infinite sequences of discontinuities characterized by small values of the
magnitude of the projectile’s outgoing velocity. These peaks accumulate toward the phase-space locations of
the UPOs, with a rate which monotonically depends on the corresponding instability exponent. They represent
the intersections of the set of the initial conditions with invariant sets of larger dimensionality embedded in the
phase space of the system, which are not directly related with the UPOs. We adopt the term “dilute chaos” to
characterize these phenomenological aspects of the scattering dynamics.
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I. INTRODUCTION

Since the dawn of modern Hamiltonian classical mechan-
ics a lot of work has been devoted to the study of the non-
linear dynamics of low-dimensional systems[1]. Among an
impressive number of interesting questions considered by
many authors, the role of time dependence of the interaction
potentials was also investigated. Time dependence increases
the dimension of the phase space by destroying typically the
energy conservation. For bound systems, even for one degree
of freedom(DOF), this leads in general to chaotic behavior
expressed through the appearance of exponential sensitivity
to the initial conditions[2–4]. For open systems the influence
of time dependence of the scattering potential has been es-
sentially considered only in one DOF periodically kicked
Hamiltonian systems(yielding a two-DOF map), mainly due
to the difficulties caused by the increase of the dimensional-
ity of the phase space[5,6]. A detailed comprehension of
scattering processes has been achieved for time-independent
systems of two DOFs; in this case, the effective phase space
is three dimensional. In these systems, chaotic scattering
manifests through the existence of homoclinic and hetero-
clinic intersections of the manifolds of the unstable periodic
orbits (UPOs), yielding a fractal arrangement of singularities
in the scattering functions[7–11]. Notice that the converse is

not true[12]. If the scattering functions present a finite num-
ber of singularities the scattering is considered as regular.

Moving on to systems with higher-dimensional phase
space, the extension of the definition and properties of cha-
otic scattering is not straightforward. The role of the UPOs is
less clear, since they may be too dilute in phase space. Yet, it
has been shown that other invariant objects may exist in
phase space with manifolds possessing sufficiently large di-
mensions to affect and explain the structure of the scattering
functions[13–16]. In particular, we mention the occurrence
of gates[16]. Their manifolds are invariant objects that de-
fine boundaries in phase space, just in the same way as sepa-
ratrices do. The implications of such an object on scattering
dynamics has been studied recently in a three-DOF system,
consisting of three atoms on a plane interacting with pairwise
Morse potentials[16]. The gate for this system corresponds
to a specific configuration, namely, one atom resting with
zero velocity infinitely far away from the other two; hence,
the gate manifold is of codimension 1 in the energy surface.

The collective effect of the UPOs and their manifolds on
the gate and the gate manifolds in a multidimensional scat-
tering system remains largely an unsolved problem. The mo-
tivation of this work is to examine this effect when the mul-
tidimensionality of the phase space is caused by the time
dependence of the scattering potential. In particular, we ad-
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dress this problem for a system with two oscillating hard
disks as scatterers. Planar scattering off hard disks represents
a prototype of low-dimensional open systems. When the hard
potential is time independent, the system has two DOFs and
the effective phase space is three dimensional. For one or
two disks the scattering process is regular due to the presence
of an additional integral of motion; the corresponding scat-
tering functions show a smooth behavior[17]. For three non-
collinear disks there is no other integral besides the energy
and the situation changes dramatically: The scattering func-
tions possess a widely fluctuating form with singularities on
a fractal set[18,19].

Introducing time dependence, in particular through oscil-
lation of the hard-disk potential, leads to a five-dimensional
phase spacesx,y,ux,uy,td, wheresx,yd are the coordinates
on the scattering plane andsux,uyd the components of the
projectile’s velocity. One therefore could expect naively that
chaotic scattering should naturally appear, provided that the
corresponding dynamics support the presence of UPOs, and
connections among them. The situation is in fact more com-
plicated[20–22]. Time dependence allows important energy
transfer processes to take place between the target and the
projectile. These events may lead to a large decrease of the
projectile’s velocity, which manifest in the scattering func-
tions as low-velocity peaks(LVPs) [21,22]. Even in the case
of one oscillating disk, where no periodic orbit is present, a
set of discontinuous peaks occurs[21]. In fact, these peaks
are related to the intersection of the set of initial conditions
with the stable manifold of the LVPs, or gate. For the one-
disk system the gate is defined as the set of stationary phase-
space points satisfyingux=uy=0. As explained in[21], this
set does not possess stable/unstable manifolds in a strict
sense, but only marginally: There are collisions(with respect
to the variation of the initial conditions) with almost vanish-
ing outgoing projectile velocity, yielding a LVP. The corre-
sponding scattering functions show an accumulation of dis-
continuous LVPs towarduuW u=0.

Due to the lack of UPOs in the one-disk system it is not
possible to explore the influence of the set of unstable peri-
odic orbits on the gate and its manifolds. For this reason we
consider the scattering off two oscillating disks with a non-
vanishing angle between their oscillation axes. This setup
allows for the presence of several families of UPOs. We
perform a detailed analysis of scattering functions depending
on one or two variables. We find the following among other
things.

(1) The UPOs influence the structure of the manifolds of
the gate, since they are accumulation points of infinite se-
quences of LVPs. We are able to explain this in terms of a
simple one-dimensional model.

(2) The rate of accumulation is characterized by a scaling
factor determined by the stability properties of the corre-
sponding UPO.

(3) The set of LVPs, in turns, seems to separate regions in
phase space, and apparently controls the existence of hetero-
clinic connections among the UPOs.

The outline of the paper is as follow. In Sec. II we de-
scribe our model system. In Sec. III the periodic orbits of the
system are determined. In Sec. IV we present our main nu-
merical results on the scattering functions and interpret them

by focusing on the role of the periodic orbits. In Sec. V we
study the interrelation between the manifolds of the UPOs
and the set of LVPs. In Sec. VI we quantify the self-
similarity of the scattering functions. Finally in Sec. VII we
summarize our main results.

II. THE TWO-DISK DRIVEN SCATTERING SYSTEM

The system under consideration consists of two hard disks
of infinite mass harmonically oscillating on the plane, with
their axes of oscillation forming anglesu andp−u, respec-
tively, with thex axis. The position of the center of the disks
i =1, 2 as a function of time is given by

xCistd = xCi
0 + A i sinsvt + fid, s1d

wherexCi
0 is the equilibrium position of the center of theith

disk, A i is its amplitude of oscillation,v its frequency, and
fi its initial phase. The potential that is felt by a particle
scattered by the disks can be written as

Vsx,td = o
i=1

2

V0Q„Ri − ix − xCistdi…, s2d

whereRi is the radius of theith disk and the limitV0→` is
taken. For concreteness we consideriA1i=iA2i=A, f1=f2
=f0, and u=p /4. We write A1=Ascosu ,sinud , A2

=As−cosu ,sinud , xC1
0 =s−d/2 ,0d, andxC2

0 =sd/2 ,0d, with d
the distance between the centers of the disks at their equilib-
rium positions, as shown in Fig. 1. The positions of the cen-
ters of the disks as a function of time are therefore given by

FIG. 1. The two oscillating disks on the plane. The solid circles
represent the disks at their equilibrium positions, whereas the
dashed ones are the disks at their extremal positions. The axes of
oscillation are also shown(dotted lines).
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xCistd = S7
d

2
± A cosu sinsvt + f0dDi

+ sA sinu sinsvt + f0ddj . s3d

Here, the upper signs refer to disk 1, the lower signs to disk
2, andi , j are unit vectors in thex,y directions, respectively.
By choosingA as the length unit and 1/v as the time unit,
we can introduce the dimensionless variablesx̃=x/A and t̃

=vt. In these variables, the potential becomesṼ0
=V0/ smA2v2d, with m the mass of the scattered particle. The

relevant parameters are thereforeR̃=R/A, d̃=d/A, and the
angleu. From now on we shall use dimensionless variables
and omit the tilde for the sake of simplicity.

In this work the values of the parameters areR=5 and
d=15. They have been chosen such that the system exhibits
a rich dynamical behavior.

III. PERIODIC ORBITS

In general, collisions can occur with stationary and non-
stationary disks. Collisions with stationary disks, i.e., when
the particle meets the disks at their extremal positions, con-
serve the energy of the particle. Collisions with nonstation-
ary disks lead to a change in the energy of the particle, ex-
cept in the case of radial collisions, i.e., when the velocity of
the particle relative to the disk is radially directed.

A. Periodic orbits of constant energy

Collisions at the extremal positions of the disks yield no
energy transfer, since at these positions the disks are station-
ary. Hence, periodic orbits colliding at these locations con-
serve the energy. These orbits exist and appear as discrete
families; they are denoted in Fig. 2 as F1, F2, F3, and F4. F4
is the reflection symmetric image of F3 with respect to they
axis. We will refer to them as upper, lower, and diagonal
families, respectively. All periodic orbits within these fami-
lies possess the same projection onto position space, but dif-
fer with respect to their momenta.

1. Upper periodic orbits

For this family, the time between successive collisions is a
multiple of the periodt=2p of the disks. Therefore, their
period is a multiple of 2t. Their velocities are given by

un =
d − 2 cosu − 2R

2pn
s4d

wheren=1, 2,…. These orbits reach the border of the inter-
action region, which is defined as the region where the par-
ticle can interact with the disks. There is no lower limit with
respect to the magnitude of the velocity that the particle
should possess in order to be on a periodic orbit. The number
of periodic orbits of this family is therefore infinite.

2. Lower periodic orbits

For these periodic orbits, the time between successive col-
lisions is again a multiple oft and their period is a multiple
of 2t. Their velocities are given by

un =
d + 2 cosu − 2R

2pn
s5d

wheren=1,2, … ,nmax. These orbits do enter the interaction
region, as shown in Fig. 3. Consider a particle that starts off
from a point A(see Fig. 3), with velocity u=uni, for somen.
If the velocity of the particle is too small, before leaving the
interaction region the particle can be scattered off succes-
sively by the same disk(at point A). That is, even if the
particle has the correct velocity in order to meet the other
disk at timent, a sufficiently slow projectile will be scattered
by the same disk it originated from before leaving the inter-
action region. Consequently, there is an upper limitnmax for
n, which depends on the geometric parameters of the system.
The value ofnmax is approximately obtained by

FIG. 2. The four families of energy conserving periodic orbits.
The solid circles represent the disks at their equilibrium positions,
whereas the dashed ones represent the disks at their extremal posi-
tions. The axes of oscillation are shown as dotted lines. FIG. 3. Segments of the periodic orbits of the families F2 and

F3 penetrating the interaction region, shown as a shaded area.
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nmax<5
d + 2 cosu − 2R

2sÎR2 − 4 sin2u + 2 cosu − Rd
, Rù 2 tanu,

sd + 2 cosu − 2Rdarccoss1 − R/tanud
2pRs1/sinu − 1d

, R, 2 tanu.6 s6d

This formula is derived using the assumption that the pe-
riodic orbit n exists if the particle emitted from point A(see
Fig. 3) with velocity u=uni does not collide with the disk
before exiting the collision region, which is shown as a
shaded area in Fig. 3. A detailed derivation of these formulas
as well as a deeper investigation of the dynamical behavior
in terms of the parameters will be given in a future work
[23]. The number of periodic orbits depends on how much
the projection of the periodic orbits onto position space over-
laps with the interaction region. When the equilibrium dis-
tance of the disks is large compared to the amplitude of the
oscillation sd@1d and their radius is smallsR!1d, a large
number of orbits exist.

3. Diagonal periodic orbits

In this case, the time between successive collisions is an
odd multiple oft /2 and their period is a multiple oft. There
are two families of such orbits, related by reflection with
respect to they axis. Their velocities are given by

uk =
Îd2 + 4 sin2u − 2R

kp
, s7d

wherek=1,3, … ,kmax. As in the case of the lower periodic
orbits, these orbits enter the interaction region(cf. Fig. 3)
and therefore there is an upper limitkmax of the accessible
values ofk. The value ofkmax is approximately given by

kmax<5
Îd2 + 4 sin2u − 2R

ÎR2 − 4 sin2su − Cd + 2 cossu − Cd − R
, Rù 2 tanc,

arccoss1 − R tancdsÎd2 + 4 sin2u − 2Rd
pRs1/cosc − 1d

, R, 2 tanc,6 s8d

wherec=C+p /2−u, and

C = arctanS2 sinu

d
D . s9d

B. Periodic orbits of nonconstant energy

These orbits exhibit nonradial collisions with moving
disks as well as collisions with stationary disks. Conse-
quently an exchange of energy between the disks and the
particle takes place. In our system locating such orbits is a
hard numerical task mainly because of their strong instabil-
ity. We have found only two orbits of this kind and their
reflection symmetric counterparts with respect to they axis.
In our study we have restricted our search to non-energy-
conserving orbits that exhibit one collision with a disk at its
extremal position.

The first orbit of this kind we have located is shown sche-
matically in Fig. 4(a). The orbit starts at a point A of the
stationary disk 2 with a velocityu0 normal to the disk. It then
collides with disk 1 at a point B while the velocity of the disk
is directed downward. At this collision the particle loses en-
ergy, and since its relative velocity is directed radially, it
returns toward disk 2 following the same path. It collides

again with disk 2 at the point A and its velocity is reversed.
It then collides again with disk 1 at the same point B, but this
time it gains energy because the disk velocity is directed
upward. It then returns to the point A after time 2t with
velocity u0. Our numerical results show that this orbit is
isolated in the sense that it does not appear as a member of a
family. Note that the distance AB is traversed four times with
two different velocities in the course of one period 2t of the
periodic orbit.

The second orbit starts at a point A of the stationary disk
2 with a velocityu0 directed horizontally, as shown in Fig.
4(b). It then moves horizontally until it collides with the
stationary disk 1 at point B. It then changes its direction,
since the collision is not radial, and collides with disk 2 at
point C. For this collision the velocity of the disk is directed
upwards. It collides at points B and A again and then it
collides with disk 1 at point D. For this collision the velocity
of the disk is directed upwards. The particle then returns to
point A with the same velocityu0 it started with. This peri-
odic orbit has period 4t.

C. Lyapunov exponents

In the following we investigate the largest Lyapunov ex-
ponent of the periodic orbits of the system. To do this we
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integrate two orbits, one is the periodic orbit and the other is
an orbit with a slightly perturbed initial condition

xs0d = xPOs0d + «W1,

us0d = uPOs0d + «W2, s10d

wherexPOs0d ,uPOs0d correspond to the initial conditions of
the periodic orbit and«W =s«W1,«W2d is a small random perturba-
tion vector in phase space.

We calculate the largest finite time Lyapunov exponent as
the slope of a straight line fitted to the curve lnfrstd / u«W ug,
whererstd is the phase-space distance between the two orbits
as a function of time. Starting close enough to the periodic
orbit su«W u<10−7d we were able to integrate the orbits for
several periods, typically 15 or more. We have found that the
calculated Lyapunov exponent converges well in a time less
than four periods. The value of the calculated Lyapunov ex-
ponent as well as its convergence properties are practically
independent of the initial position and the direction of the
perturbation vector«W.

The Lyapunov exponents for the upper, lower, and diago-
nal families are shown in Fig. 5; in the case of the upper
orbits we considered the first 15 orbits. We observe that the
Lyapunov exponent decreases with the period of the periodic
orbit. This is intuitively expected since, asn→`, the veloc-

ity un of the orbit tends to zero. The periodic orbits therefore
approach the orbits for whichu=0 and x is constant and
lying at the border of the interaction region. These orbits
have both Lyapunov exponents equal to zero, i.e., they are
marginally unstable. We note that the value of the Lyapunov
exponent for the upper and the diagonal families is very
close.

IV. SCATTERING FUNCTIONS AND THEIR
INTERPRETATION

In the numerical experiments presented below, we con-
sider and analyze the scattering functions such as the dwell
time T, and the number of collisions with the disksN. The
former is defined as the time spent in the scattering region,
which is a circular region of radiusR0@R centered at the
origin that encloses the interaction region.T is equivalent to
the time of flight to a detector. Mostly, we consider one-
parameter scattering experiments; hence the scattering func-
tions are given in terms of this parameter. In the scattering
experiments of this section, the initial conditions are such
that the particles can start arbitrarily close to a certain family
of periodic orbits, and we vary only the magnitudeu0 of the
initial velocity, which has a fixed direction.

A. Scattering functions probing the upper family

We choose as initial position of the particle

x0 = S−
d

2
+ cosu,sinuD . s11d

The initial phase of the disks isf0=p /2. The initial velocity
of the particle is directed along the positivex axis, v0=u0i.
Its magnitude is varied in a range where all the periodic
orbits of the upper family exist. Therefore for some values of
u0 the scattered particle falls exactly onto the periodic orbits
of the upper family. We compute the dwell timeT and the
numberN of collisions with the disks in terms of the initial
velocity u0; results of this setup are shown in Fig. 6. The

FIG. 4. Schematic representation of two non-energy-conserving
periodic orbits of the system. The period of the orbit in(a) is 2t and
in (b) it is 4t, wheret is the period of the oscillation of the disks.
The extremal positions of the disks and the axes of oscillation are
indicated with the dotted lines.

FIG. 5. Largest finite-time Lyapunov exponent for the upper
(square), lower (circles), and diagonal(triangles) orbits as a func-
tion of the period.
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locations of the periodic orbits are shown as dotted vertical
lines.

The scattering functions of Fig. 6 display a rich structure
of peaks around the locations of the periodic orbits. The
Tsu0d scattering function at the vanishingu0 limit is domi-
nated by a background which varies as 1/u0. This is due to
the fact that, asu0→0, the particle collides for the first time
with the disk at a position which tends to the extremal posi-
tion of the disk. Consequently the particle traverses the orbit
with a velocity that remains almost constant and equal tou0,
leading to a dwell time that grows as 1/u0. Periodic orbits
correspond to true singularities in the scattering functions.
On the left of then=1 orbit, there is a prominent peak which
is labeled as L1 in Fig. 6(a). Yet events leading to this peak
do not display a large number of collisions. Peaks of this
kind occur when the scattered particle loses a large part of its
energy after a collision with a disk; we refer to such peaks as
low-velocity peaks[21,22]. The particle then traverses a seg-
ment of its orbit(until the next collision) with a small veloc-
ity and thereforeT becomes large. This specific peak is due
to a loss of energy of the scattered particle after the first
collision with the disks. Such peaks occur for all othern.1
periodic orbits and are located on valuesu0 corresponding to
smaller velocities. Asn increases the corresponding two
peaks come rapidly closer.

Peaks in the number of collisions, such as the one labeled
by P1 in Fig. 6, correspond to an exact tracing of the periodic
orbits by the scattered particle. These represent true singu-
larities for both theTsu0d andNsu0d scattering functions. In

Fig. 6 these peaks are relatively low due to the instability of
the corresponding UPOs and the finite resolution in the cal-
culation. We also observe that at some value of the initial
velocity, there is a prominent peak in the number of colli-
sions(labeled as M1 in Fig. 6 and no peak inT. This is due
to the fact that the particle shows subsequent multiple colli-
sions with one and the same disk for an initial velocity
slightly higher than that of the disk at the instant of the first
collision. These scattering events leading to peaks in the
Nsu0d and not in theTsu0d scattering functions have been
studied in[21].

A magnification of the region marked as A in Fig. 6(a),
shown in Fig. 7(a), reveals a self-similar structure; a further
magnification is shown in Fig. 7(b). The peak labeled as L1a
in Fig. 7(a) is analogous to the peak L1, but is due to a loss
of energy after the second collision with a disk. The peak
labeled as L1b in Fig. 7(b) is again similar to L1 but is due to
a third collision. There is a sequence of such peaks due to the
first, second,…, collisions accumulating toward the periodic
orbit. This accumulation also occurs around other UPOs of
this family.

The region marked as B1 in Fig. 7(a) has a structure simi-
lar to region B of Fig. 6(a). It is found that the scattered
particle can approach then=2 periodic orbit by starting with
an initial velocity in the region B1. In the initial velocity
range of Fig. 7(a) other periodic orbits of higher ordern can
be approached by starting with initial velocities in the re-
gions marked as C1sn=3d and D1sn=4d. This implies the
existence of heteroclinic connections among then=1 orbit
and(at least) then=2,3,4 periodic orbits. In the following we

FIG. 6. Scattering functions(a) Tsu0d and (b) Nsu0d near the
upper orbits. The locations of the periodic orbits are shown as dot-
ted vertical lines.

FIG. 7. (a) Magnification of the region marked as A in Fig. 6(a).
(b) Magnification of the region marked as A1 in(a). In both cases,
the correspondingNsu0d scattering function is shown as an inset.
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will attempt to give a qualitative interpretation of this locally
self-similar structure and understand its hierarchy.

B. One-dimensional representation

Since the interesting dynamics occurs close to the peri-
odic orbits, and since on these orbits the dynamics is truly
one dimensional in position space, it is meaningful and elu-
cidating to use the following one dimensional representation.
We consider the projection of the dynamics onto the axis of
the periodic orbit, which in the case of the upper and lower
families is thex axis. The projection of the position of the
particle onto thex axis as a function of time is then repre-
sented by connected linear segments on thex-t plane. The
corresponding projections of the disks are represented by
two curves, which in the case of the upper orbits have the
form

xstd = ± ÎR2 + sin2us1 7 sinvtd2 −
d

2
± cosu sinvt,

s12d

where the upper signs refer to disk 1 and the lower ones to
disk 2. We emphasize that the one-dimensional representa-
tion is only approximate, and ceases to have validity when
sufficient energy is transferred to they component of the
velocity of the particle. Yet the model elucidates scattering
events that actually take place in the full two-oscillating-disk
model.

In this one-dimensional representation, theperiodic orbits
(of the upper family) are represented by lines connecting the
minima of the upper curve with the maxima of the lower
curve as shown in Fig. 8(a). Low-velocity peaksoccur when
orbits encounter one of the disk’s curves almost tangentially.
The velocity after the collision is then small and such that the
particle can escape the interaction region without colliding
with the same disk twice[21,22]. After the collision, the line
that represents the trajectory of the particle is almost parallel
to thex axis.

Close to any initial velocityui that corresponds to a peri-
odic orbit of orderi, there is a velocityuis1d

* that leads to a
LVP immediately after the first collision. This velocity is
smaller than that of the periodic orbit,uis1d

* ,ui. We refer to
the associated peaks in the scattering functions asprimary
low-velocity peaks. The initial velocity uis1d

* that leads to a
LVP is in the range

ut , ufs , uis1d
* , ui ,

whereut is the initial velocity that the particle must have in
order to collide with the disk “tangentially” andufs is the
initial velocity that leads to a full stop of the particle after the
first collision; see Fig. 8(b). We denote byuD the derivative
of the curve that describes the disk motion(in this case thex
component of the disk velocity) at the instant of the colli-
sion; thenut=uD andufs=2uD. As i increases, bothui andufs

decrease; therefore the differenceui −u1s1d
* also decreases.

This means that the collisions leading to a primary LVP oc-
cur closer and closer to the extremal point(at which the

periodic orbit collides with the disk anduD=0) as the period
of the orbit increases. In Fig. 8(b), these events(ordered with
decreasing initial velocity) are illustrated in the one-
dimensional representation:(a) The periodic orbit(solid line)
of velocity ui; (b) a LVP (dotted line) corresponding to a
collision after which the particle has just the energy to escape
from the interaction region without colliding with a disk;(c)
a full stop of the particle(dashed line) of velocity 2uD (this
event does not correspond to a LVP since the particle is still
in the interaction region and will collide with a disk in a time
interval of the order of the period of the oscillation); (d)
event(dash-dotted line) when the particle has a velocityuD
equal to the disk velocity at the point of the collision.

After the first collision, the interval of initial velocities
Du0=fu1s1d

* ,u1g will spread to a much wider one,Du1. The
same is true forfu2s1d

* ,u2g , fu3s1d
* ,u3g, …, defined by periodic

orbits of higher order[see Fig. 9(a)]. This spread of the ini-
tial velocity interval makes accessible a large sequence of
events after the first collision. Consequently, in the range
fu1s1d

* ,u1g of initial velocities, other LVPs can occur, which
are due to the second, third, etc., collisions. The initial ve-
locities that lead to these peaks are denoted asu1s2d

* , u1s3d
* , …,

respectively. Starting with an initial velocityu1s2d
* in

fu1s1d
* ,u1g, the particle can follow the periodic orbit one col-

lision more, and exhibit a LVP after the second collision[see
Fig. 9(b)]. Therefore, the same spread of the velocities men-
tioned above occurs also with initial velocities in the range
fu1s2d

* ,u1g but is due to the second collision. Since in this

FIG. 8. (a) One-dimensional representation of the periodic orbits
n=1 (solid line), n=2 (dashed line), and a primary LVP(dotted
line). An orbit with u0.uis1d

* is shown(dash-dotted line). (b) En-
largement of a region of(a): periodic orbit(solid line), LVP (dotted
line), and a full stop of the particle(dashed line). The dash-dotted
line corresponds to an event where the particle encounters the disk
“tangentially.”

SCATTERING OFF TWO OSCILLATING DISKS:… PHYSICAL REVIEW E 70, 056215(2004)

056215-7



one-dimensional representation this argument holds for an
arbitrary number of collisions, there is an infinite sequence
u1s1d

* , u1s2d
* ,… of LVPs accumulating toward the periodic or-

bit u1s`d
* =u1. An analogous representation of the whole struc-

ture is therefore contained betweenu1sid
* andu1. This explains

the self-similar structure observed in Figs. 6 and 7. The same
construction holds around other periodic orbits: For everyn
there is a sequenceuns1d

* , uns2d
* ,… of LVPs due to the first,

second,… collisions accumulating towardsun.
Starting off with initial velocities in the interval

fu1s1d
* ,u1s2d

* g leads, after the first collision, to a velocity spread
Du18 illustrated in Fig. 9(b). The following events are then
accessible.(a) Secondary LVPs: There is a sequence of

LVPs, all due to the second collision, between the initial
velocitiesu1s1d

* andu1s2d
* . They occur when the velocity of the

particle after the first collision is such that the second colli-
sion[with the lower curve that describes the disk motion; see
Fig. 9(c)] is almost tangent. The sequence of these peaks is
not infinite, since the particle can collide with the same disk
if the velocity after the first collision is small enough.(b)
Approximate tracing of periodic orbits: In the same range of
initial velocities, there is also a sequence of peaks which
correspond to an approximate tracing of some periodic orbits
of the family. They occur when the velocity of the particle
after the first collision is such that the second collision is at a
maximum of the lower curve[see Fig. 9(c)]. This sequence is
also not infinite: The velocity after the first collision that
corresponds to a LVP cannot be arbitrarily close to zero, i.e.,
no orbits of arbitrarily high periods can be traced.

These events occur alternatingly with varying initial ve-
locity u0. In Fig. 10 the hierarchy of the structure around the
n=1 periodic orbit is schematically illustrated. The horizon-
tal axis represents the initial velocities and the location of
LVPs is shown with vertical lines above this axis. The loca-
tion of then=1 periodic orbit as well as the events that lead
to approximate tracing of periodic orbits are shown with ver-
tical lines below the axis. The same description carries over
for all orbits of the upper family.

In terms of the one-dimensional representation, we turn
now to analyze other aspects of the scattering functions
(Figs. 6 and 7) for the upper orbits. In Fig. 11(a), the one-
dimensional representation of the processes belonging to the
peaks labeled as L1, L2, L3 of Fig. 6 is shown. These peaks
are primary LVPs due to the first collision, occurring close to
the n=1,2,3 periodic orbits inu0 space, respectively. Their
initial velocities correspond tou1s1d

* , u1s2d
* , andu1s3d

* respec-
tively. The magnification shown in Fig. 7 displays the self-
similar structure betweenu1s1d

* (peak L1) and u1. In that
range, there exists a velocity which leads to a prominent

FIG. 9. (a) Illustration of the spreadDu1 andDu2 of velocities
after the first collision, when the initial velocity is in the interval
fu1s1d

* ,u1g or fu2s1d
* ,u2g. (b) Periodic orbit n=1 (solid line), and

LVPs obtained after the first collision(dashed line) and the second
collision (dotted line). (c) Events with initial velocities in the inter-
val fu1s1d

* ,u1s2d
* g. Approximate tracing of then=2 periodic orbit

(dashed line); a LVP after the second collision(dotted line); n=1
periodic orbit (solid line); and events corresponding tou1s1d

* and
u1s2d

* (dash-dotted lines).

FIG. 10. Location and hierarchical arrangement of LVPs and
events that correspond to approximate tracing of periodic orbits(PO
app), located betweenu1s1d

* andu1. The sequence ofu1s1d
* , u1s2d

* , …
accumulating toward the periodic orbitu1 is also shown.
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LVP, labeled as L1a, close to then=1 periodic orbit. As can
be seen from its one-dimensional representation, this peak is
ascribed to the second collision and its initial velocity corre-
sponds tou1s2d

* . Betweenu1s1d
* (peak L1) andu1s2d

* (peak L1a),

there exists a sequence of LVPs due to the second collision
(peaks L4 and L5) as well as a structure reminiscent of that
around then=2,3, … ,nmax periodic orbits of Fig. 6. This
occurs because these orbits can be approximately traced with
initial velocities in that range. The one-dimensional represen-
tation of the events belonging to the peaks labeled as L1a,
L4, L5 in Fig. 7(a) is shown in Fig. 11(b). The magnification
in Fig. 7(b) [region A1 of Fig. 7(a)] reveals the self-similar
structure in the rangefu1s2d

* ,u1g (peak L1a, and the vertical
dotted line). The prominent LVP labeled L1b is due to the
third collision, and its initial velocity corresponds tou1s3d

* . In
the rangefu1s2d

* ,u1s3d
* g (peak L1a and peak L1b) there is again

a sequence of LVPs such as L6, which are due to the third
collision, and there are approximate tracings of periodic or-
bits, such as the peak labeled P2. The one-dimensional rep-
resentation of the latter events is shown in Fig. 11(c).

We recall that the preceding description of the one-
dimensional representation can only be taken over up to a
certain development level of the scattering functions of the
full planar oscillating two-disk system. Interestingly, the one-
dimensional representation described above introduces a
symbolic sequence to characterize the scattering events. We
emphasize that such symbolic dynamics requires symbols
assigned to the LVPs to fully describe the dynamics. This is,
the invariant setmustalso include the LVPs.

C. Scattering functions probing the lower family

In this case, we use as initial position

x0 = S−
d

2
− cosu,− sinuD . s13d

The initial phase of the disks is fixed tof0=3p /2, and the
initial velocity is directed along the positivex axis, v0=u0i.
Its magnitude is varied in a range where periodic orbits exist;
therefore for some values ofu0 the scattered particle falls
exactly onto the periodic orbits of the lower family.

In Fig. 12(a) we presentTsu0d. Note that in this configu-
ration only two orbits of the lower family exist. Around each
periodic orbit, a rich structure is observed. In analogy to the
upper family, we notice the appearance of LVPs and the self-
similarity of the arrangement of peaks, as shown by the suc-
cessive magnifications around then=1 periodic orbit plotted
in Figs. 12(b) and 12(c). However, in contrast to the upper
family, our numerical results suggest that in this case a peri-
odic orbit cannot be reached or approximately traced by
starting off with initial conditions in the neighborhood of
another one. This implies that there are no heteroclinic con-
nections among different periodic orbits of this family. This
impediment is due to the fact that the periodic orbits collide
with the disks deep inside the interaction region. In terms of
the one-dimensional representation, the periodic orbits occur
colliding on the minima of the lower curve and on the
maxima of the upper curve(Fig. 13). The nature of the peaks
as well as their accumulation toward the periodic orbits can
be explained using the same arguments as for the upper fam-
ily. We turn to describe the origin of the peaks labeled in Fig.
12(a), using the same notation as for the upper orbits.

FIG. 11. One-dimensional representation of the processes near
the upper family of periodic orbits.(a) Peaks labeled L1, L2, L3 in
Fig. 6; (b) L1a, L4, L5 of Fig. 7(a); and(c) L1b, L6, P2 of Fig. 7(b).
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At the valueu1 of the initial velocity the particle moves
on then=1 periodic orbit leading to a singularity in theTsu0d
plot. Due to the finiteness of the resolution and the instability
of the orbit, this singularity appears as a relatively small
peak. There is an initial velocityu1s1d

* .u1 for which a LVP
occurs after the first collision. This peak is labeled as L1 in
Fig. 12(a). The one-dimensional representation of this event
is shown in Fig. 13(a). From this figure we notice that, after
the collision with the disk, the particle “penetrates” the curve
that describes the motion of the disk. After that collision, the
velocity of the particle has an importanty component, which
is due to the fact thatu1s1d

* −u1 is much larger than in the case
of the upper orbits[cf. Figs. 13(a) and 7(a)]. As for the upper
family, a similar peak can occur by starting closer to the

periodic orbit and following it for one more collision. This
corresponds to the initial velocityu1s2d

* ,u1 and leads to the
peak labeled as L1a in Fig. 12(a). The sequenceu1s1d

* , u1s2d
* ,

… accumulates towardu1 alternately: u1s1d
* , u1s3d

* , … are
larger thanu1 whereasu1s2d

* , u1s4d
* , … are smaller. In Fig.

13(b), the one-dimensional representation of the trajectory
corresponding to the initial velocityu1s3d

* is shown. This al-
ternating behavior is due to the fact that the periodic orbits
are inverse hyperbolic; in terms of the one-dimensional rep-
resentation the periodic orbits alternate collisions at the
minima of the lower curve and at the maxima of the upper
one, which describe the motion of the disks. Around the
LVPs of the scattering functions there is no additional struc-
ture, because of the important transfer of velocity to they
component, which favors the escape and prevents the appear-
ance of additional structures. The range of initial velocities
fu1s3d

* , u1s1d
* g leads to a large spread of velocities after the first

collision, denoted asDu in Fig. 13(b). The latter makes two
“secondary” LVPs accessible, namely, those labeled as S1
and S2 in Fig. 12(a). Their one-dimensional representation is
shown in Fig. 13(c). Only two such peaks exist. This is due
to the fact that, if a trajectory starts off with an initial veloc-
ity larger than that of peak S2, it will collide with disk 2
more than once, thus losing the possibility of colliding with
disk 1 which would yield a low velocity after the collision.
Similar peaks exist betweenu1s2d

* andu1s4d
* due to the second

collision, betweenu1s5d
* andu1s3d

* due to the fourth, and so on.
The hierarchy and the locations of the peaks described above
are shown in Fig. 14.

The structure around then=2 periodic orbit is similar.
The important difference is that there are no peaks due to the
second, third, … collision in the rangesfu2s3d

* ,u2s1d
* g ,

fu2s2d
* ,u2s4d

* g, …, respectively. This is a consequence of the
fact that trajectories with initial velocities betweenu2 and
u2s1d

* (and u2s2d
* ) are “screened” by disk 2, experiencing a

second collision with disk 2. This is illustrated in Fig. 13(d).
Finally, we note that the structures in the region marked as

A in Fig. 12(a) are not related to periodic orbits but to the
singularity in the number of collisions located atu0=0.

A similar structure of LVPs accumulating toward the
UPOs is also found in probing the diagonal family or orbits.
The structures in the scattering functions can be explained
using exactly the same arguments we used in the case of the
upper and the lower families of orbits[24].

D. Scattering functions near the non-energy-conserving
periodic orbits

We consider now scattering experiments whose initial
conditions are in the neighborhood of one of the non-energy-
conserving periodic orbits detected numerically. We choose
as initial conditions

x = Sd

2
− cosu + Rcossp + u0d,sinu + Rsinsp + u0dD ,

FIG. 12. (a) The Tsu0d scattering function for the lower family;
Nsu0d is shown in the same range ofu0 in the inset. The locations of
the periodic orbits are shown with dotted vertical lines.(b) Magni-
fication ofTsu0d around then=1 periodic orbit;(c) magnification of
the region marked as B in(b).
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u = „u0 cossp + u0d,u0 sinsp + u0d…, s14d

whereu0=0.061 335,f0=p /2, andu0 is varied around the
valueu0=1.011 13. Figures 15 show the results forTsu0d and
Nsu0d, and successive magnifications are shown in Fig. 16.
Remarkably, the figures display a seemingly isolated peak
that corresponds to the periodic orbit. Magnifications of the
scattering functions around it show that there is an accumu-
lation of LVPs with velocities larger than that of the periodic
orbit. These peaks are due to the last collision(before es-

cape), as shown in Fig. 15(b). The absence of additional
peaks in the number of collisions in these figures indicates
that this orbit does not communicate with any other periodic
orbit of the system, i.e., there are no homoclinic or hetero-
clinic connections associated with this orbit.

V. MANIFOLDS OF THE UPOS AND THE SET OF LVPS

In order to get a better understanding of the properties of
the manifolds of the UPOs as well as their interrelations with
the manifold of the gate invariant set of the system(set of
LVPs) we perform two further numerical investigations.

In order to study scattering functions that explore the
neighborhood of periodic orbits belonging to different fami-
lies, we use a scattering setup in which both the direction and
the magnitude of the initial velocity are varied by means of
the parameters. In order to construct scattering functions
that probe the upper and diagonal families of orbits, the mag-
nitude of the initial velocity is varied according to

u0 = uU + ssuU − uDd s15d

whereuU is the velocity of a periodic orbit(of ordern) of the
upper family anduD is the velocity of a periodic orbit(of
order k) of the diagonal family. The initial velocity vector,
with respect to thex axis, forms an anglew, which is varied
according to

FIG. 13. One-dimensional representation of distinct trajectories near the periodic orbits of the lower family.(a) Events corresponding to
u1, u1s1d

* , andu1s2d
* . Clearly, the inequalitiesu1s2d

* ,u1,u1s2d
* hold. (b) Events corresponding tou1, u1s1d

* , andu1s3d
* ; the spreadDu is also

indicated.(c) Secondary LVPs[peaks S1 and S2 of Fig. 12(a)]. (d) A trajectory with initial velocity infu2, u2s1d
* g (dashed line) experiences

a second collision with disk 2 instead of one with disk 1. No other secondary LVPs besides those of(c) exist.

FIG. 14. Location and hierarchy of the LVPs accumulating to-
ward then=1 lower periodic orbit. The notation used is the same as
in Fig. 10.
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w = sC, s16d

whereC is given by Eq.(9). Then, the initial position of the
particle is

x0 = S−
d

2
+ cosu + Rcosw,sinu − RsinwD s17d

and the initial phase of the disks is fixed tof0=p /2. There-
fore, for s=0 the particle follows thenth order periodic orbit
of the upper family and fors=1 it follows the kth order
periodic orbit of the diagonal family. In the same manner we
can construct a parameter to probe scattering events near the

lower and diagonal families. These scattering functions will
provide complementary information, as they exhibit intersec-
tions with the stable manifolds of periodic orbits of the di-
agonal and upper families.

In Figs. 17, theTssd andNssd scattering functions probing
the n=1 upperss=0d and thek=2 diagonalss=1d orbits are
shown. The structure arounds=0 ands=1 consists of the
typical accumulation of LVPs around the corresponding pe-
riodic orbits. The peak labeled as L1 is an isolated LVP
occurring far from thek=2 diagonal periodic orbit, with a
finite sequence of secondary peaks that accumulate toward it
from the left. Such peaks have been encountered and studied
in detail in [22]. Peaks labeled as L2 and L3 are primary
LVPs located close to the periodic orbits ats=0 ands=1,
respectively.

The peaks inNssd, labeled as P1 and P2, correspond to
tracing of periodic orbits. More specifically, it is found that
peak P1 corresponds to tracing of thek=1 diagonal orbit and
peak P2 to the second energy nonconserving orbit(of period
4t) we found numerically. Therefore, the more complex line
of initial conditions used in this scattering setup intersects
the stable manifolds of periodic orbits not located ats=0 and
s=1. Successive magnifications of the region around peak P2
[marked as A in Fig. 17(a)] are shown in Fig. 18. They reveal

FIG. 15. Scattering functions in the neighborhood of the energy
nonconserving periodic orbit:(a) Time delayT as a function ofu0;
(b) subtraction of the time after the last collision from the time
delay; and(c) Nsu0d. The location of the periodic orbit is shown
with a dotted vertical line.

FIG. 16. Successive magnifications of theTsu0d plot of Fig.
15(a) around the periodic orbit. The location of the periodic orbit is
shown with a dotted vertical line.
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another isolated peak, implying the lack of homoclinic or
heteroclinic connections with this periodic orbit. The same
structure is revealed by successive magnifications around the
region B in Fig. 17(a). This is consistent with the results
probing directly these periodic orbits: no heteroclinic con-
nections involving the diagonal(or non-energy-conserving)
and upper periodic orbits are found.

Collecting our results, we have found homoclinic and het-
eroclinic connections between UPOs of the upper and the
lower families. Yet our numerical results show that these
connections occuronly between members of the same fam-
ily. This is interesting since there is no communication be-
tween periodic orbits of the upper and lower families, even
though there are families of periodic orbits(i.e., the diagonal
orbits) that could allow this communication.

The probing tools in the second numerical experiment are
the two-dimensional scattering functions and the aim is to
reveal the interrelations between the manifolds of the UPOs
and those of the gate invariant set. In our system the gate
invariant set[16] consists of all the points in thex-y plane
outside the interaction region such thatux=uy=0, i.e., the
scattered particle is at rest in a region where it can at most
interact tangentially with the disks. Particles starting with a
nonvanishing initial velocity outside the interaction region
cannot exit the interaction region with arbitrary small or van-
ishing outgoing velocity. Physically, this is due to the hard-
wall type of the potential. Consequently orbits can only ap-
proach this set asymptotically, in the sense of reaching very
small but not arbitrarily small velocities. Therefore, the

manifolds of the gate can be defined in a marginal sense, as
the set of initial conditions leading to LVPs in the dwell-time
scattering function. These initial conditions lead to orbits
that, after their interaction with the disks, approach the gate
as closely as possible.

A more detailed analysis of the two-dimensional scatter-
ing functions and the involved structures will be given in a
future work [23]. Here we give a first record of some pre-
liminary yet illuminating results. We choose as initial posi-
tion the point

FIG. 17. (a) Tssd and (b) Nssd scattering functions probing the
n=1 upperss=0d and thek=2 diagonalss=1d periodic orbits.

FIG. 18. (a) Magnification ofTssd in the region A of Fig. 17(a);
(b) magnification of the region B of(a); (c) magnification of the
region C of (b). The correspondingNssd scattering functions are
shown in the insets.
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x0 = S−
d

2
+ cosu,sinuD , s18d

wheref0=p /2 and the componentsux anduy of the initial
velocity are varied in a range where all periodic orbits of the
upper family exist. Such orbits exist foruy=0 andux given
by Eq. (4); concretely, ux.0.570 for the n=1 orbit, ux
.0.285 forn=2, ux.0.142 forn=3. The final velocityuf
of the particle after its last collision with the disks is plotted
in terms ofux anduy. The result is shown in Fig. 19(a).

The stable manifold of the gate, as defined above, consists
of initial conditions which leave the interaction region with a
velocity of small magnitude. It is therefore contained in the
black regions of Figs. 19. Obviously, the originsux=uy=0d
belongs to the gate. The figure shows the existence of points
belonging to the stable manifold of the gate that accumulate
towards the origin. As was mentioned before, the set of up-
per periodic orbits also accumulates toward the origin. More-
over, the periodic orbits are also accumulation points of the
LVPs, and thus for the stable manifold of the gate. This is
shown in Fig. 19(b), where a magnification of a region
around then=1 periodic orbit is shown.

As can be seen from the magnifications of Fig. 20, such a
two-dimensional scattering function exhibits a self-similar
structure. Moreover, we notice in Fig. 19 a structure which
appears to be a line crossing the regions of the LVPs and

forming a small negative angle with the axisuy=0. This
structure contains phase-space points leading to orbits with
many collisions, as can be seen from Fig. 21(a) where the
Nsux,uyd scattering function corresponding to Fig. 19(a) is
shown. In fact, for thex0 of Eq. (18) these orbits approach
the diagonal UPOs and therefore we can say that this struc-
ture is the intersection of the stable manifold of the diagonal
orbits with theux-uy plane. The stable manifold seems to be

FIG. 19. (a) Outgoing velocity in terms of the componentsux

anduy of the initial velocity. In the range of initial velocities, all the
periodic orbits of the upper family exist.(b) Magnification of the
region A of (a). In this region then=1 periodic orbit of the upper
family exists.

FIG. 20. (a) Magnification of the region B of Fig. 19(a); (b)
magnification of the region C of(a); (c) magnification of the region
D of (a).
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cut by the set of LVPs(the manifold of the gate) in almost
similar parts. It has been found that these parts do not com-
municate in the sense that the evolution of initial conditions
within such a part lead to trajectories which do not leave this
part. The overall characteristics of the two-dimensional scat-
tering functions are independent of the choice of the initial
position x0. However the points of the apparently linear
structure can occasionally belong to the manifolds of a dif-
ferent family of UPOs depending on the initial positionx0.
For x0 lying between the two disks the linear set belongs to
the manifolds of the diagonal family, as already mentioned,
while for x0 above the disks the corresponding set belongs to
the stable manifold of the upper family of UPOs. Finally, for
x0 below the disks the linear set of points belongs to the
stable manifold of the UPOs of the lower family.

After that first detection of the phase-space structures of
the UPOs and the gate manifold, the question that arises is
their impact on the time delay of the projectile inside the
scattering region. Figure 21(b) depicts the dwell-time scatter-
ing function Tsux,uyd for the x0 of Eq. (18). Comparing to
Fig. 21(a) we can see that the set of LVPs is clearly much
more effective on the dwell time since the regions of large
dwell time coincide with those of the LVPs, while the impact
of the manifolds of the UPOs is apparently less important
probably due to their localization in phase space and/or due
to the large instability of the UPOs.

VI. QUANTIFICATION OF THE SELF-SIMILARITY
OF THE SCATTERING FUNCTIONS

Let us consider the way the velocitiesuns1d
* ,uns2d

* ,… of the
LVPs after the first, second,… collision accumulate toward
the velocityun of a certain periodic orbit. We have numeri-
cally found that they approachun according to

uuns1d
* − unu

uuns2d
* − unu

=
uuns2d

* − unu

uuns3d
* − unu

= ¯ =
uunsid

* − unu

uunsi+1d
* − unu

= an. s19d

Here,an is a constant that depends on the specific periodic
orbit. It can be shown(see Appendix A) that the set of accu-
mulating points uns1d

* ,uns2d
* ,… , uns`d

* =un has zero box-
counting dimension, regardless of the value of the ratioan. It
can also be shown(see Appendix B) that this set has local
mass dimension equal to 1 around the accumulation point,
independently of the specific periodic orbit in question.
Therefore, we use only the valuean to quantify the scaling
properties of the structures in the scattering functions.

We have calculated the value ofan for several orbits. The
results are shown in Fig. 22(a); an is plotted versus the
Lyapunov exponents in Fig. 22(b). It is found that the ratio
an depends monotonically on the period of the orbit. More-
over, as can be seen from Fig. 22(a), the dependence ofan on
the indexn of the periodic orbit in question, at least for the
upper orbits, is to a good approximation a power law. The
exponent obtained from here is 1.97. It is also found[see

FIG. 21. (a) Nsux,uyd scattering function corresponding to the
ufsux,uyd scattering function of Fig. 19;(b) Tsux,uyd scattering
function corresponding to theufsux,uyd scattering function of
Fig. 19.

FIG. 22. (a) The value of the ratioan for the upper(square),
lower (circles), and diagonal(triangles) orbits. (b) an versus the
Lyapunov exponents, for the same orbits.
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Fig. 22(b)] that there is a monotonic relation between the
stability of a periodic orbit and the accumulation properties
of the LVPs toward it.

VII. SUMMARY AND CONCLUSIONS

In this paper, we have investigated the classical dynamics
of an open system with a high-dimensional phase space, in
the presence of a time-dependent zero-range potential. Spe-
cifically, we studied the scattering off two oscillating hard
disks on the plane, leading to a five-dimensional phase space.
We considered a general setup when the oscillation axes of
the disks form an angleu. Our main goal was twofold:(i) to
determine and classify the dominant structures that charac-
terize the scattering dynamics of the system, thereby focus-
ing on the specific features due to the potential’s time depen-
dence, and(ii ) to associate these structures with invariant
sets in phase space. In particular, we were interested in clari-
fying the role of unstable periodic orbits in the scattering
dynamics of the system.

The main tool in our investigations was the use of one-
and two-dimensional scattering functions. As a first step, we
have shown the existence of several families of unstable pe-
riodic orbits, whose manifolds may or may not display ho-
moclinic or heteroclinic intersections depending on the spe-
cific periodic orbit. It turns out that the effect of homoclinic
and heteroclinic connections is quite difficult to detect at the
level of one-dimensional but visible at the level of two-
dimensional scattering functions. These are dominated by the
presence of infinite sequences of isolated peaks that accumu-
late toward the position of the UPOs and are characterized by
a very small magnitude of the projectile’s outgoing velocity;
therefore they are referred to as low-velocity peaks, and re-
sult from a large energy loss of the particle after an inelastic
collision with one of the disks. Our results definitely show
the importance of including the set of LVPs in any attempt to
describe the scattering dynamics. They form sequences orga-
nized in a hierarchical structure; this can be clearly appreci-
ated in the time delay scattering function. Although the basic
building blocks of this hierachical structure are always the
invariant manifolds of the UPOs, the location and hierarchy
of the LVPs depend on the particular details of the system.
We were able to identify and classify the scattering events
leading to the specific structure of the scattering functions
using a simplified one-dimensional model. In addition, we
have shown a monotonic dependence of the accumulation
rate of the LVPs with respect to the stability properties of the
UPO to which they accumulate.

The set of LVPs acts effectively as separatrices in the
pendulum, defining boundaries in phase space. In our model
system, this set allows for homoclinic and heteroclinic inter-
sections of members of the same family of periodic orbits.
The stable manifolds of such periodic orbits do reach the
asymptotic(incoming) region, yielding a fractal set of singu-
larities in the appropriate scattering functions. However, their
density in phase space is quite low due to the large dimen-
sionality of phase space; only certain two-dimensional scat-
tering experiments detect the complexity in the system. We
propose as an appropriate description of this dynamical com-

plexity the term “dilute chaotic scattering:” It reflects the
presence of homoclinic/heteroclinic connections in phase
space and thus complicated scattering behavior depending on
a dilute subset of initial conditions, and also the existence of
dominant invariant structures(set of LVPs) which limit and
regulate the influence of the UPOs. Responsible for the oc-
currence of dilute chaos is the instability of the UPOs and/or
the extremely localized appearance[linear point set on
sux,uyd plane] of their stable/unstable manifolds in phase
space. The occurrence of dilute chaos has also been observed
using different parameter sets for the system[23,24]. In gen-
eral, as the ratiod/R increases, the UPOs become more un-
stable and less dense in phase space. Therefore, the set of
LVPs plays a more important role in the dynamics, having
the same accumulation properties as those described here.

We attribute the importance of the set of LVPs in the
scattering dynamics to the large dimensionality of phase
space. This may be achieved by considering many degrees of
freedom or by including a time-dependent potential. For con-
servative systems, the high dimensionality permits that the
energy may be shared by the different DOFs, in particular,
one or more may have no energy at all. The time dependence
by itself plays an important role for the presence of LVPs.
Indeed, these have been observed in time-dependent two-
DOF systems which are conservative[25,26]. The time de-
pendence of the potential, as has been noted previously, al-
lows certain processes to display large energy loss. Again,
certain regions in phase space, lying outside of the interac-
tion region, may attain very small energy. In the cases men-
tioned above of time-dependent systems that become conser-
vative, such regions in phase space have a low
dimensionality because of additional constraints; in this case,
only scattering experiments that are prepared without keep-
ing the constant of motion fixed may notice them[25]. For
time-dependent systems of more than two DOFs, the set of
LVPs has a relatively large dimensionality. Thus, in general,
scattering experiments will detect them easily. The important
point to emphasize is that the set of LVPs defines invariant
regions in phase space of high dimensionality, which may
influence the scattering dynamics. Their manifolds may have
homoclinic and heteroclinic intersections; this may explain
the hierarchical structure of their accumulation toward the
UPOs that we found. Moreover, they may display properties
of marginal instability, like parabolic manifolds, as it is the
case in our system of hard-wall potentials[21].

The above observations clearly show that the scattering
situation in higher dimensions becomes qualitatively more
complex. In particular, there are examples suggesting that the
gate and its manifolds can take over the role of the UPOs in
the basic construction of the chaotic saddle[16,26,27]. A
challenging question is thus to look for a setup where the
role of UPOs becomes more important again, and even
dominant, in the presence of the LVPs. Moreover, a precise
understanding on how the set of LVPs defines barriers in
phase space for the manifolds of the UPOs remains open.
Questions of this type are left for future investigations.
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APPENDIX A: BOX-COUNTING DIMENSION

We shall now calculate the box-counting dimension of a
set of accumulating points. In what follows for simplicity we
setun as the zero of theu axis of the velocities. We choose
our box size to be«=s, /ad j wherej is an integer and, is the
length of the intervalfun,uns1d

* g. Since the distance between
un andu1s jd

* is s, /ad j, we need one box to cover the structure
between 0 andu1s jd

* , and additionalj −1 boxes to cover the
other j −1 points. Therefore,

Ns jd = 1 + s j − 1d = j . sA1d

The box-counting dimension is then

dF = − lim
«→0

ln Ns«d
ln «

= − lim
j→`

ln j

lns,/ad j = −
1

lns,/ad
lim
j→`

ln j

j
= 0.

sA2d

Consequently the set of points has zero box-counting dimen-
sion regardless of the value of the ratioan.

APPENDIX B: LOCAL MASS DIMENSION AROUND u=un

Here, we calculate the local mass dimensiondm of the set
of points uns1d

* ,uns2d
* ,… around the accumulation pointuns`d

*

=un. The dimensiondm is defined as

dm = lim
«→0

lnsmf0,«gd
ln «

, sB1d

wheremf0,«g is the mass contained in the intervalf0,«g, and
is given by

mf0,«g =E
0

«

rsuddu, sB2d

with rsud being the density of points.
In our case, the distance between two successive points is

uuns j+1d
* − uns jd

* u = US,

a
D j+1

− S,

a
D jU

= S,

a
D jS1 −

,

a
D

= uns jd
* S1 −

,

a
D . sB3d

Since the density of points is analogous to the inverse of the
distance, the density of points isrsud,1/u. Therefore the
integral of Eq.(B2) diverges. In order to regularize the inte-
gral, we use a velocityu* .un to write the integral in the
form

mfu * , u * + «g =E
u*

u*+« 1

u
du, sB4d

which tends tomf0,«g at the limit u* →0. We will thus
calculatedm as a function ofu* and then take the limitu*
→0 if needed. Evaluating the integral of Eq.(B4) provides

mfu * , u * + «g = lnS1 +
«

u*
D . sB5d

This yields

dm = lim
«→0

lnflns1 + «/u * dg
ln «

= 1. sB6d

The set of points has therefore local mass dimension
equal to 1 around the accumulation point, regardless of the
value of the ratioan.
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